Human Cancer Biology Deregulation of a Hox Protein Regulatory Network Spanning Prostate Cancer Initiation and Progression
نویسندگان
چکیده
Purpose: The aberrant activity of developmental pathways in prostate cancer may provide significant insight into predicting tumor initiation and progression, as well as identifying novel therapeutic targets. To this end, despite shared androgen-dependence and functional similarities to the prostate gland, seminal vesicle cancer is exceptionally rare. Experimental Design: We conducted genomic pathway analyses comparing patient-matched normal prostate and seminal vesicle epithelial cells to identify novel pathways for tumor initiation and progression. Derived gene expression profiles were grouped into cancer biomodules using a protein–protein network algorithm to analyze their relationship to known oncogenes. Each resultant biomodule was assayed for its prognostic ability against publically available prostate cancer patient gene array datasets. Results: Analyses show that the embryonic developmental biomodule containing four homeobox gene family members (Meis1, Meis2, Pbx1, and HoxA9) detects a survival difference in a set of watchful-waiting patients (n 1⁄4 172, P 1⁄4 0.05), identify men who are more likely to recur biochemically postprostatectomy (n 1⁄4 78, P 1⁄4 0.02), correlate with Gleason score (r 1⁄4 0.98, P 1⁄4 0.02), and distinguish between normal prostate, primary tumor, and metastatic disease. In contrast to other cancer types, Meis1, Meis2, and Pbx1 expression is decreased inpoor-prognosis tumors, implying that they function as tumor suppressor genes for prostate cancer. Immunohistochemical staining documents nuclear basal-epithelial and stromal Meis2 staining, with loss of Meis2 expression in prostate tumors. Conclusion: These data implicate deregulation of the Hox protein cofactors Meis1, Meis2, and Pbx1 as serving a critical function to suppress prostate cancer initiation and progression. Clin Cancer Res; 1–12.
منابع مشابه
Deregulation of a Hox protein regulatory network spanning prostate cancer initiation and progression.
PURPOSE The aberrant activity of developmental pathways in prostate cancer may provide significant insight into predicting tumor initiation and progression, as well as identifying novel therapeutic targets. To this end, despite shared androgen-dependence and functional similarities to the prostate gland, seminal vesicle cancer is exceptionally rare. EXPERIMENTAL DESIGN We conducted genomic pa...
متن کاملModeling Cancer Progression via Pathway Dependencies
Cancer is a heterogeneous disease often requiring a complexity of alterations to drive a normal cell to a malignancy and ultimately to a metastatic state. Certain genetic perturbations have been implicated for initiation and progression. However, to a great extent, underlying mechanisms often remain elusive. These genetic perturbations are most likely reflected by the altered expression of sets...
متن کاملExploring Gene Signatures in Different Molecular Subtypes of Gastric Cancer (MSS/ TP53+, MSS/TP53-): A Network-based and Machine Learning Approach
Gastric cancer (GC) is one of the leading causes of cancer mortality, worldwide. Molecular understanding of GC’s different subtypes is still dismal and it is necessary to develop new subtype-specific diagnostic and therapeutic approaches. Therefore developing comprehensive research in this area is demanding to have a deeper insight into molecular processes, underlying these subtypes. In this st...
متن کاملThe Roles of Long non-coding RNAs (lncRNA) in Prostate Cancer
Background & Objective: Prostate cancer is a compound condition in which gene expression has altered. Several surveys have revealed that genetic components have been involved in prostate cancer progression. Findings proposed that they can modify a noteworthy portion of disposing of elements, which is associated to the developing prostate cancer in protein coding sequences. The purpose of this r...
متن کاملRoles of Renin-Angiotensin System in the Regulation of Prostate Cancer Bone Metastasis: A Critical Review
Mestastatic prostate cancer cells (MPCCs) frequently metastasize to bone, which is a “favorite soil” for colonization and proliferation of MPCCs. Prostate cancer bone mestastasis is tightly associated with tumor-induced bone lesions, most commonly caused from the etiological imbalance between osteoblastic bone formation and osteoclastic bone resorption, and from the anti-tumor immune response. ...
متن کامل